Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway.

نویسندگان

  • M Kawamura
  • J W Heinecke
  • A Chait
چکیده

Oxidized lipoproteins may be important in the pathogenesis of atherosclerosis. Because diabetic subjects are particularly prone to vascular disease, and glucose autoxidation and protein glycation generate reactive oxygen species, we explored the role of glucose in lipoprotein oxidation. Glucose enhanced low density lipoprotein (LDL) oxidation at concentrations seen in the diabetic state. Conjugated dienes, thiobarbituric acid reactive substances, electrophoretic mobility, and degradation by macrophages were increased when LDL was modified in the presence of glucose. In contrast, free lysine groups and fibroblast degradation were reduced. Although loss of reactive lysine groups could be due to either oxidative modification or nonenzymatic glycation of apolipoprotein B-100, inhibition of lipid peroxidation by the metal chelator, diethylenetriamine pentaacetic acid, blocked the changes in free lysines. Thus, glycation of lysine residues is unlikely to account for the alterations in macrophage and fibroblast uptake of LDL modified in the presence of glucose. Glucose-mediated enhancement of LDL oxidation was partially blocked by superoxide dismutase and nearly completely inhibited by butylated hydroxytoluene. These findings indicate that glucose enhances LDL lipid peroxidation by an oxidative pathway involving superoxide and raise the possibility that the chronic hyperglycemia of diabetes accelerates lipoprotein oxidation, thereby promoting diabetic vascular disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucose Influence on Copper Ion-Dependent Oxidation of Low Density Lipoprotein

Background: It is well established that oxidative modification of low density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. We examined the in vitro effect of glucose on native and glycated LDL oxidation using copper ion dependent oxidation system. Methods: In this study, LDL was isolated from plasma...

متن کامل

Antioxidant Effects of Vitamins C and E on the Low-Density Lipoprotein Oxidation Mediated by Myeloperoxidase

Background: Oxidative modification of low-density lipoprotein (LDL) appears to be an early step in the pathogenesis of atherosclerosis. Meanwhile, myeloperoxidase (MPO)-catalyzed reaction is one of the potent pathway for LDL oxidation in vivo. The aim of this study was to evaluate in vitro antioxidant effects of vitamins C and E on LDL oxidation mediated by MPO. Methods: MPO was isolated from f...

متن کامل

The Effect of ? -Tocopherol on Copper Binding to Low Density Lipoprotein

The oxidative modification of low density lipoprotein (LDL) may play an important role in atherogenesis. Antioxidants that can prevent LDL oxidation may act as antiatherogens. Our understanding of the mechanism of LDL oxidation and factors that determine its susceptibility to oxidation is still incomplete. Copper is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper...

متن کامل

In Vitro Effect of ?-Tocopherol, Ascorbic Acid and Lycopene on Low Density Lipoprotein Glycation

Nonenzymatic glycation of low density lipoprotein (LDL) is a reaction of glucose and other reducing sugars with apolipoprotein B100 (apo-B100) lysine residues. In diabetes, this reaction is greatly accelerated and is important in the pathogenesis of diabetic complications. The objective of this study was to investigate in vitro effects of ?-tocopherol, ascorbic acid and lycopene on LDL glycatio...

متن کامل

In Vitro Effect of ?-Tocopherol, Ascorbic Acid and Lycopene on Low Density Lipoprotein Glycation

Nonenzymatic glycation of low density lipoprotein (LDL) is a reaction of glucose and other reducing sugars with apolipoprotein B100 (apo-B100) lysine residues. In diabetes, this reaction is greatly accelerated and is important in the pathogenesis of diabetic complications. The objective of this study was to investigate in vitro effects of ?-tocopherol, ascorbic acid and lycopene on LDL glycatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 94 2  شماره 

صفحات  -

تاریخ انتشار 1994